CMS

Scaling HEP to Web Size
with RESTful Protocols:
The Frontier Example

Dave Dykstra, Fermilab

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

10/19/10

mailto:dwd@fnal.gov

* Talk goal: encourage use of RESTful protocols
* Qutline:

— Explain what REST is about

— Frontier database caching system as a RESTful
protocol example

— CernVM FileSystem as another example
— Authorization protocols & REST

10/19/10 2

CMS,

* REpresentational State Transfer
* Defined by Roy Fielding in his PhD dissertation

* General architectural style derived from using a
subset of http strictly according to http RFCs
— Roy was a principal author of http RFCs

* Designed for Internet-sized scaling, that is,
primarily for caching
— Also for easy replication of servers

* Good for many purposes beyond web browsing
— Iincluding many HEP tasks that need large scaling

10/19/10 3

* Essentials for an http-based cacheable protocol:

— Stateless service
* Every request independent
* No cookies

* No https (digital signatures for authentication are OK)
— Unless just for tunneling to scalable private-net server farm

— Use http methods as originally intended

* Don't use POST to pass in complex parameters

* Use GET with a separate URL for every “resource”
— Set cache expiration times

* Varies by application

10/19/10 4

* Important but less essential for an http-based
cacheable protocol:

— Don't use "?" in URL (forces change to cache option)
— Use Last-Modified/If-Modified-Since or
ETag/If-None-Match

* Enables revalidating cache with simple NOT MODIFIED
response if nothing changed

* [f answer has changed, it is returned immediately with no
protocol overhead

— Deploy with sufficient caching proxies

10/19/10 5

* Distributes read-only database SQL queries

— Updates are done with a different protocol (like most
of the RESTful cacheable systems | have seen)

* Designed for HEP “Conditions” data with many
readers of same data distributed worldwide

* |deal for caching

10/19/10 6

Data Element Frontier example

resource Data returned from an Oracle query

XML document including data
(encoded by gzip and base64)

resource metadata Database error messages

10/19/10 7

representation

Component Frontier example

origin server Tomcat with Frontier serviet

proxy Squid

“Note that the difference between a proxy and a gateway is
that a client determines when it will use a proxy.”
— R. Fielding dissertation

10/19/10 8

ﬂ\ \: \\\ \ ‘\\

CMS,

Tier0 "\ T'erd
Offline | _~_Squids Farm

Servlet+

— Frontier
___| Servers .
“ Tomcat+ . T'ggtiﬁ;?’ =)

10/19/10

Squid

Area
Network

- Many copies of frontier_client in jobs on the farms
- Jobs start around the world at many different times
- Cache expirations vary from 5 minutes to a year

TierN
Farm

Tier1, 2,3
@&~

TierN
Farm

Online /E

— Frontier u _
| Servers //" :
Tomcat+ |-~ u =

Servlet+ | — ~ "

Squid T
Squids

- Blasts data to all 1400 worker nodes in parallel
- Hierarchy of squids on worker nodes
- Frontier servlet sends “Cache-Control: max-age=30"

10/19/10 10

Client 1
Initiate request

In cacﬁe? No

Squids

Save response &

| send toE client

Receive response

10/19/10

Tomcat Oracle
Look up Etable
modification time
Return modtime
Save modtime
Convert request
Return data

Convegrt response
set expiration time
and Last-Modified

11

Client 2 Squids Tomcat Oracle
Initiate request

In caché? Yes,
but expired. Send
If-Modified-Since

Table modtime saved
recently? Yes
Has it changed? No

Send NOT MODIFIED
+ new expiration time

Update expiration time

Send cached response
Receive response

10/19/10 12

.
n
N
o\

— \

5 4
N \

AN

\

/ Y
- . \
W
| 4 0 \

.

* CernVM File System (CVMFS) designed to
distribute slowly changing filesystem of software
— Mostly only additions

* URLs are secure hash of contents of the files
— Once cached, they never change
— Detection of tampering is trivial

* Indexes map filenames to hashes
— Digitally signed to prevent man-in-the-middle attack

10/19/10 13

.
n
N
o\

— \

5 4
N \

AN

\

VZ —
. W |

* Grid authorization uses SOAP-based protocols

— Uncacheable on several levels
* https
* POST for parameters
* Client node name in parameters
— Many of essentially the same authorization requests
happen about the same time so caching could help
* Sign & timestamp answers instead of encrypt
* Encode parameters in URL
* Put a group name in URL instead of node name

* Amazon EC2 has RESTful authorization option

10/19/10 14

e Use REST!

— Whenever the same information is needed in many
places

— Use locally deployed standard caches

* Already deployed at most sites participating in LHC
experiments

10/19/10 15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

